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Dynamics of discrete models of binary mixtures in two dimensions: Exact solution
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The binary mixture of interacting disparate particles (heavy and light) in two dimensions has been
modeled with the help of discrete-velocity Boltzmann-Broadwell models. These have been solved analyt-
ically for all integer and half-integer values of coupling constants. Depending on initial conditions the
one-particle distribution functions and the entropy of light particles may exhibit a nonmonotonic

behavior, as a function of time.

PACS number(s): 05.20.Dd, 51.10.+y

The understanding of dynamical phenomena in fluids
has been greatly increased through an efficient use of
discretized kinetic equations. The set of continuous posi-
tion and velocity variables (r;,v;), where i=1,...,N
(number of particles in the system), is being replaced by
either half-discrete (only v; discretized) or fully discrete
(both r; and v;) variables. The resulting formulations
lend themselves to an analytical treatment [1] or permit
rapid simulations [2] for a large number of physical and
physicochemical problems. In fact the statistical
mechanics of such discretized systems has firm funda-
ments [3] and the growing number of applications [4,5] is
accompanied by new theoretical findings [6].

In this work we have attempted to introduce different
kinds of particles with different collision rules in order to
split the system into several (in our case two) interacting
parts. The subsystems would themselves correspond to
true particles and the background, respectively.

Such a splitting is not unique as the particles may differ
by the values of parameters as the mass, the charge, etc.
It is, however, a tradition in statistical mechanics [7] to
treat first the mixtures of particles of unequal masses.
We follow it here with two additional requirements:
while staying within the framework of discrete models,
we want both subsystems to be truly interacting and in
addition soluble, at least for certain values of coupling
constants and initial conditions. (Note that we have re-
cently treated a similar situation, but with one subsystem
without interactions [8].) These last conditions are by no
means easy to satisfy. In the following we shall present
an example of a mixture of particles with unequal masses
which satisfies the above requirement. We do not claim
that the system is very realistic. The advantage of it is to
give the exact solution, which can be thoroughly studied
and which will be presented in the following.

We propose and study here a statistical model of
binary mixture of very different particles, heavy (H) and
light (L) ones. Our purpose is to establish equations for
one-particle distribution functions f(r;,v;) for coupled H
and L particles and to provide their solution in the case
of given collision rules. In fact, the binary-mixture prob-
lem is not new [7], but to date only various partial solu-
tions are available [9,10]. In the following we will present
the solutions of space-homogeneous transport equations
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and derive expressions for the entropy.

We are interested here in a two-dimensional system of
particles which can move only in four mutually perpen-
dicular directions with the same speed |v|=1. If for the
moment we assume that there are no interactions be-
tween the particles, such a four-velocity model can be
achieved through collisions between particles and a set of
fixed, randomly distributed squares with diagonals point-
ing in the direction of motion. Such a “wind-tree” model
has been introduced a long time ago [11] by Ehrenfest
and Ehrenfest and is exactly soluble. A very readable ex-
position of this model in Ref. [12] prompted us to gen-
eralize it to a more complicated situation of a binary mix-
ture of interacting particles. Let ,;(¢) and ¢;(t)
(i=1,...,4) be one-particle distribution functions of
heavy and light particles, respectively, which are normal-
ized [3}_,¢;(1)=1and 3}_,@;(1)=1]. For both H and
L particles separately we allow head-on collisions which
conserve the momentum and flip the outgoing particles
velocity. In addition there exists a coupling between H
and L particles—indeed a very asymmetric one: whereas
the H particles are totally unaffected by the collisions
with L particles, only the head-on collisions between H
and L particles change the state of L particles, as illus-
trated in Fig. 1. This model is a generalization of the
Lorentz gas [13]: the scattering centers for L particles
are H particles. The latter display their own dynamics
governed by their collisions. We suppose also that the
system is spatially uniform. (The nonuniform situation
does not allow in general an analytical solution [14].)
The set of eight coupled kinetic equations now reads

dy;
7=h(‘/’i+1¢i+3_¢i+z¢i) ’ (1)

e
dt E8\Pi +1Pi+3— Pi+29;
TRV 1@ 43T Y 3@ 41— 2¢ 409:)
i=1,...,4. Q)

The collision rules that lead to Egs. (1) and (2) are illus-
trated in Fig. 1. The coupling constants 4, g, and k are
simple functions of sizes, masses, and velocities and are
assumed to be positive constants here. The form of Eqgs.
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FIG. 1. (a) Schematic representation of collision processes of
Eq. (1). (b) Schematic representation of collision processes of
Eq. (2). Large and small rhombuses represent heavy and light
particles, respectively.

(1) and (2) is recognized as representing two asymmetri-
cally but linearly coupled and spatially uniform
Broadwell models [15-18]. The bilinear coupling be-
tween ¥’s and ¢’s in Eq. (2) is obviously not the most gen-
eral one. It has the advantage that it allows the analyti-
cal solution. The solution of (1) and (2) gives ¥;(z) and
@;(t) as functions of their initial conditions #;(0) and
@:(0). In the following we describe some analytical solu-
tions obtained for definite initial conditions. The strategy
is to solve first the system (1) for ¥;(¢) and then substitute
it into (2) in order to solve for ¢;(¢). If we choose special

configurations for heavy particles, namely,
¢i(0)=¢'i +2(0), then
Y =t()=L(1+de "),

3)
D)=y (t)=1(1—de ™),

where 2d =¢'](0)+¢3(0)_%
Substituting (3) into (2) one can show that (2) can be re-
duced to a single first-order differential equation for
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x(t)=@ (1) +@s(2):

%x= —(g +kx+E[4H0 BN+ 2k + £

4)
with
pi()=1[x(t)+ A(1)],
()=4[1—x(t)+B(1)],
(5)
=%[x(t)—A(t)]
()=1[1—x()—B(1)],
where
k d _
A(t)=C, exp 3l "’” s
B(t)=C,exp | ——= t+ie_
28X T 1P, ’
and the constants C; and C, are given by
C,=[@(0)—@;(0)]exp(—kd /2h) and C,=[¢,(0)
—@4(0)]exp(+kd /2h). The general solution of Eq. (4)
now reads
Cle™7—C3e’
—, —(y+k) 1 2
x(1)=e~(¥Hwr J;—(dk)’ f__y‘yT]—dy
kde ™' 1
TR
Ay +k—1) c. ©

In Eq. (6) the constant C is as usual determined from
the initial conditions on x(0) and we have used
reduced constants g/h=y, k/h=k, and h =1, with
a variable y=dxe . The integral in Eq. (6), I(y)

(ae ?—be”)y 7" 'dy, can be expressed in terms of
known functions for any positive integer or half-integer
value of y [19]. Equations (3), (5), and (6) constitute the
solution of the problem.

In the following we shall illustrate it by displaying
@i(t), ¥;(t), and the entropy of the system defined
through the H function of Boltzmann H(?),
S(t)=—H(t)=Sy+S,, where (kz=1)

4
S()=—3 [¢:(t)ng;(t) + @, (t)Ing; (1) ]. (7
i=1

In the following figures we are presenting the solutions
for @;(#) as a function of initial conditions @,(0) and the
coupling constants h =75', g=77, and k =1}, where
Ty and 7, are relaxation times for H and L particles sep-
arately and 74, is the relaxation time determined by the
H-L collision processes. The time dependence reflects
directly different time scales set by 7’s.

In Fig. 2(a) we plot ¥,(t) of Eq. (3) and ¢@;(#) for an
asymmetrical choice of initial conditions on ¢,;(0) with
k =g =h. All of the @,(z) display clearly nonmonotonic
behavior with time, with a local extremum followed by a
slow relaxation towards equilibrium @,()=1. In Fig.
2(b) the partial entropies S; (#) and Sg(t) are dlsplayed,
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with a small anomaly in S; (¢) clearly visible.

In Fig. 3 the value of k is fixed to kK =1 alongside with
given initial conditions @;(0). The @;(¢) are plotted as a
function of g =h. The overshoots in @;(¢) increase with g
decreasing (for 75; <7, the overshoots are larger than
for 74, >7;); see Fig. 3(a). The anomalies in S;(t)
behave correspondingly; see Fig. 3(b).

In Fig. 4 the values of g =h are fixed alongside with in-
itial conditions and @;(¢) are studied as a function of k.
If the H-L collision time 7y, is larger than 7, (g <k),
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the extrema of @, () are much wider than in the opposite
case, Fig. 4(a). In Fig. 4(b) the corresponding entropies
are presented. The positions of local entropy minima do
depend on k whereas their depths are k independent.

The origin of such a characteristic nonmonotonic
behavior of L particles is the interplay between the dy-
namics of L and H particles. As seen from Eq. (3) the H
particles reach their equilibrium with the relaxation time
Ty, obviously independent of L particles. The relaxation
of L particles is strongly perturbed by the H particles in
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FIG. 2. Dimensionless one-particle distribution functions ¥;(¢) and @;(¢) [Egs. (4)~(6)] and dimensionless partial entropies Sg(t)
and S;(2) [Eq. (7)] plotted as a function of time for h=g=k=1: (a) ¥,(t)=13(¢) and ¥,(t)=1),(¢) for |/1,(O)=¢3(0)=%; @i(t)
(i=1,...,4) for ¢,(0)=0, ¢,(0)=0.3, ¢3(0)=0.05, and @4(0)=0.65; (b) S; (¢) and Sg(¢) for the initial conditions of (a); (c) same as
in (a), but for initial conditions ¢,(0)=0, @,(0)=0.4, 4(0)=0.05, and @,(0)=0.55; and (d) S, (t) and Sg(¢) for the initial conditions

of (c).
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the ¢ region where ;(¢) is far from the equilibrium values
$;(0)=1. The measure of this perturbation is the
strength of the coupling constants g and k, relative to h.
For g =0 and the times for which ,(¢)=1 (H particles
practically “thermalized”), the model reduces to the orig-
inal wind-tree model [11] with a perfect monotonic
behavior of ¢;(¢). For g0 and small values of k the
overshoots of @;(?) appear. These anomalies in @;(¢) re-
sult as the L particles are first dragged on by the H parti-
cles (which are out of equilibrium) before they can relax
themselves toward their own equilibrium. The anomalies
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increase as the coupling k increases. We note that the
whole range of coupling constants (with the restriction
that y is an integer or a half-integer) can be explored easi-
ly. We stress that it is only the partial entropy of the sys-
tem of light particles which displays an anomaly as a
function of time. The total entropy S (¢), Eq. (7), is a per-
fectly increasing function of time and consequently
Boltzmann’s H theorem [20] is not violated. It is worth
mentioning here that the possible existence of a subsystem
which does not satisfy the H theorem is frequently
evoked and amply discussed in the textbooks [20,21].
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FIG. 3. Dimensionless one-particle distribution functions
@:i(t) [Egs. (4)-(6)] and dimensionless partial entropies Sy()
and S;(¢) [Eq. (7)] plotted as a function of time for k =1, for
different values of g =h: (a) @,(2)=g;(2) and @,(1)=g@,(t) for
#1(0)=1,(0)=0, and @,(0)=g4(0)=1 and (b) S, (¢) for the ini-
tial conditions of (a).

FIG. 4. Dimensionless one-particle distribution functions
@i(t) [Eqgs. (4)-(6)] and dimensionless partial entropies Sg(?)
and Sy (t) [Eq. (7)] plotted as a function of time for g =h =1 for
different values of k: (a) @(1)=gs(t) and @,(t)=@4t) for
¥,(0)=13(0)=0 and @,(0)=@4(0)=1 and (b) S, (¢) for the ini-

tial conditions of (a).
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The essence of this discussion is that the H theorem is
supposed to function for a closed isolated system satisfy-
ing certain conditions for collision processes. If such a
system is broken up in, say, two distinct subsystems
which are interacting, then the H theorem has no reason
to be satisfied by any of these systems separately. In fact
it can be shown on some exceedingly simple models, such
as the harmonic oscillator coupled to a heat bath (see
[22]), that it is indeed the case. Concerning the truly in-
teracting system we known of no concrete examples
where this could be shown analytically. (In our previous
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work we could observe this phenomenon on a model
whose one subsystem was noninteracting [8].) We have
achieved it here with the help of an exactly soluble
discretized kinetic model of two-dimensional interacting
particles.
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